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The Inc rementa l  Shear Modulus in an

Incompress ib le  E las t i c  Mate r i a l

by

K . N .  Sawyers and R . S .  Rivl in

Center for the App l icat ion of Mathematics

Lehigh Un ive r s i t y ,  Bethlehem , Pa. 18015

Abstract

The incremental  shear modulus is calculated for infin i tes imal

shear of an incompressible isotropic elastic mater ia l  in a state

of pure homogeneous de formation . Necessary and suf f ic ient  condi-

t ions that it be posi t ive are obtained. These conditions are

related to the Hadamard conditions for propagation of a wave of

in f in i t e s imal  amplitude in the deformed material .
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1. In t roduc t ion

In the present  paper we ca l cu lua te  the incremental shear

modulus for  i n f i n i t e s i m a l  s imp le shear of an incompress ib le

isotropic  e last ic  ma te r i a l  which is i n i t i a l l y  subjected to a

pure homogeneous deformation , the direction of shear and plane

of shear being arbitrary . (An analogous calculation has been

carried out previously [1] for the case when the plane of shear

is a pr inc ipa l plane for the pure homogeneous deformation.)

Necessary and sufficient conditions are obtained for the

incremental shear modulus to be positive for all directions of

shear perpendicular to a f ixed direction, which lies in the

plane of shear and is defined by a unit vector n say. Thes e
are the inequalities (4.8) of the present paper . It is shown

in §5 that they are equivalent to the necessary and sufficient

condit ions , previously obtained in [21 and given in (6.5) of

the present paper , that the two sinusoidal waves of infinitesimal

amplitude which can propagate in the deformed elastic material ,

in the direction n , have real velocities . The velocities of

propagation of these waves are given (see equation (5.6) below)

by v’~i7~ , where p is the material density and ‘ii is one or

other of the stationary values of the incremental shear modulus

for shearing in a direction perpendicular to n . It is shown

in § 7 that the direc tions of polar iza tion for the waves are the

direc tions for which the incremen tal shear modulus takes it s

stationary values.

The necessary and suffic ient conditions (6.5) for the wave

velocities to be real , and the equivalent conditions (4.8) for 



3.

the incremental shear moduli to be positive , involve the first

and second derivatives of the strain-energy function for the

material with respect to the strain invariants , as well as the

principal ex tens ion ra tios for the pure homogeneous deformation

and the unit vec tor 11 . It is desirable to obtain these condi-

tions in a form which is independent of n . This has been

achieved in [1,3] in the case when u is restricted to lie in

a pr inc ipal plane of the pure homogeneous deformation . It has

already been shown that the conditions so obtained (the inequali-

ties (6.10) of the present paper) imply the condition (6.5)2.

In the present paper it is shown that a further one of the condi-

tions (condition (6.5)3) is automatically satisfied . It was shown

in a previous paper [4], by numerical example , that the first of

the conditions (6.5) is not implied by the conditions (6.10). 
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2. Incremental constitutive equation

We consider a deformation of an incompressible isotropic

elastic material in which a particle which is initially at

vector position ~ with respect to a fixed origin 0 , say ,

moves to vector position x . The components of ~ and x

in a fixed rectangular cartesian system x , with origin at

0 , are and x~ respectively. The deformation gradient

matrix j  is defined by*

I — IIj~ II — Ilx i c , ,II . (2.1)

The Finger strain ~ is defined by

— , ( 2 . 2 )

where the dagger denotes the transpose. Let W be the strain-

energy per unit volume . Then, since the material is isotropic

and incompressible, W must be expressible as a function of

the invariants T
~ 

and 12 of ~ , defined by

— tr~~ , 12 • ~.{(tr~)
2 -tr~~

2} . (2.3)

Thus,

W — W(11,T2) . (2.4)

The Cauchy stress matrix ~ - 1I
~~JII is then given by

~~~~— 21(~! +1 ~~~~~~~~~~~~~~~~~ c2 1-~o , (2.5)
— ‘‘aT 1 

~I I — aT• — j —
~~~~ 1 2’ 2

where ~ is the unit matrix and P is an arbitrary hydrostatic

pressure.

We use the notation to denote differentiation with respect
to and shall assume that the Einstein summation convention
applies to lower case Greek and Latin subscripts.

~~~~~~~~~ 

- _ _ _ _ _- _ _ _  .- -- -- -- —
-

— - - - — - — - —.~~~~~~~~~~- ---- -—-_ — - - - — - -._
~~
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We now consider that the deformation ~+x is the resultant

of a fin ite deformation , in which the particle initially at vector

pos ition ~ moves to vector position X , followed by an infini-

tesimal deformat ion in which it moves to vector position x . We

shall accordingly write

- X + u  (2.6)

and correspondingly

a - 0 +  , — 11+ i1 , 12 
- 12 + 

~2
(2 . 7)

, P P+p

where a , I~~, 12 , C and P are the value s of 
~ 11, T~~ ~ and P

associated with the deformation ~-‘X

With this notation , it follows from (2.5) that

S — 2[(W1+11W2)c 
- W2(Cc+cC) + i1W2C

+ {(W 11
+1 1W12) i 1+ (W 12+1 1W 22 ) i 2 }C -  (W 12i1+W 22 12 )C 2]- p 6 ( 2 . 8)

where

— , 
_ ~W ~~~ , etc. (2.9)

l u.O 1 u 0

I t  follows from ( 2 . 1 ) ,  ( 2 . 2 ) ,  ( 2 . 3 ) , ( 2 . 6 )  and ( 2 . 7 ) 2 3 ~~~
with the neglect of terms of higher degree than the first in the

spatial derivatives of u , that

C •~~~~ u +X Uii i,~ j ,
~ j ,t~ i ,a (2.10)

i — 2 X  u i 1 - C c1 j~~ct i,~ ‘ 2 1 1 ii ii .

_______________ ______________________
. ,  -•~~~~

--
- ~~~~~ - - ~~~~~~~~~~~~~~~~~~~~
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6. 1•
3. The incrementa l  shear modulus

We now consider that the deformation ~~X is a pure

homogeneous deformation with princi pal extension ratios A 1,

\ ,~ \~ and principa l directions para ll el to the axes of the

rectangular Cartesian coordinate system x . Thus

X A — XA~A 
(A— 1,2,3) . (3.1)

We suppose that a uniform simple shear of amount K is

superposed on this pure homogeneous deforma tion , the direction

of shear being parallel to the unit vector t , say , and the

plane of shear being parallel to the unit vectors .
~~ and ~

say, where n is perpendicular to £ . Then , in (2.6) U is

given by

U — . (3 .2 )

With (3.1), equations (2.1), (2.2) and (2.3) yield

CAB — XA~AB , 
I~ — ~ A~ , 

~2 
— ~ , (3.3)

where 6AB is the Xronecker delta and denotes summation

over B- 1,2,3 . The incompressibility of the material implies

that

A~ A 2A 3 
— 1 . (3.4)

Introducing (3.1), (3.2) and 
~~~~~~~ 

into (2.10), we obtain ,

with t’n,— 0 and (3.4),

R
We shall assume that the Einstein summation convention is
not applicable to upper case Latin subscripts.

~~~~~~~~~~~~~~~~~~~~~~~~~~~ -_ .-~~ - —~~~~- ---~~~ -~~~ . -~~~~-~ - — -  —_-- -
~ 
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C AB - K (.tA nBA
~~

+ Z BnA \ A )

i1 — 2ic 
~ ~A fl A A A , (3 .5)

i2 - 2~c{~ X~ ~ 
LAnA A A 

- 

~~ 
.e~n~x~ } - - 2K ~ ~A n A A A

From and we obtain

(C2) —
- AB A A B ’

2 2 2 2 (3.6)
(Ec~ cE~ AB - K (. t

B
R

A
X

A
+ tAnBXB)(A A + XB)

Introducing 
~~•~~~1 2’  (3 .5)  and (3 .6)  into (2 . 8) we obtain

5AB 
- 2K

~AB~~
p6AB , (3.7)

where

5AB - Wl(tAnBA~~
+ tBnA A A)

+ W2{.eAnBA A + LBnA X B - 4& AB ~

+ 2A
~ 6AB [W11 ~ Z~fl~A g+ w12{(I1-A~) ~

- 

~~ 
- w22(I1-A~) ~~ ~c~lc~~~J . (3.8)

In deriving this result , we use (3 .4) and the relat ions

• ~ n~ - 1 , 
~ 
LAnA - 0 . (3.9)

We note that the plane material surface which is normal to

the unit vector ii after the pure homogeneous deformation remains

normal to n after the imposition of the simple shearing deforma-

tion and the area of an element of this surface is unchanged by

this deformation . Accordingly, the change f in the component

of the stress vector acting on this surface in the direction of

the unit vector .t is given by



‘T’~
S .

A , B 
SAB LAn B - 2K

A
Y
B 

SAB~ A flB . (3 .10)

The incremental shear modulus , u say , for the simple shear

Considered is given by

— f/ K . (3.11)

Then , introducing (3.8) into (3.10) and using the relations

(3.9) and 
~~~~~~ 

we obtain

~1j - W~ ~ 
A
~
n
~
+W 2 ~ ~

-2
~
2

+ 2[W11(~ A
~
eAnA)

2
- 2wl2(~ A

~
LAnA ) (

~ Xj
2LAnA)

+ W22(Z A~
2tAnA)

2
J . (3.12)
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4. Condi t ions  for  the incremental shear modulus to be positive

In th is  section we consider that  the d i rec t ion of the uni t

vector n is fixed and we derive conditions for the incremental

shear modulus to be positive for all choices of the direction of

shear t perpend icular to n

Let a, b be two perpendicular unit vectors in a plane

normal to n . We choose their positiSre directions so that

a, b , n forms a right-handed triad. Then ,

a•a — b•b — n•n — 1 , a b  — a~n — b’n — 0 , n — axb . (4.1)

Since .t is perpendicular to n , we may express it in the form

— a cosO + b sin 8 (4.2)

Introducing (4.2) into (3.12), we obtain

— P cos 20+ Q sin 20+ R , (4.3)

where

P — W2P1 + 2W11P2 - 4W12P3 
+ 2W22P~

Q — W2Q1+ 2W11Q2 - 4W12Q3
+ 2W22Q~ , (4.4)

R — W1R0 + W2R1 + 2W11R2 
- 4W12R3 

+ 2W22R~

and P1,P2J...,R~ are defined by

P1 
- 

i 
~ X

2(a2 b~) , - ~ ~~2~~2+ b~)

Q1 - 
~ 

AA aAbA ~

1 2 2 1  2 2
P2 

- 

~~ XAnAaA } 
- 

~q J
~A

TtAbA }

-----———.----—-
~~~~~~~~~~

—.,,
~
.—I,——-—----.-——----_-- - — ---—
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- q A~ n A aA}{~ A~ nA b A }

1 2 2 1 2 2
- ~~ A~n~a ,,} + 

~~ X~ n~ b~~}

p
3 
. 4{~ X AnA aA}{~ X A nA aA } - 4q XAnA bA } XA nA bA }

Q 3 - ~~ A~ n~ a~ }{~ A A nA bA } + 

~~ X~ nAbA}{~ X A nA aA }

R3 - 

~~~ 
XAnAaA }{X A A nAaA }+~~{Z 

A AnAbA } {
~ 

A A nAbA }A A (4 .5 )
- ‘q x 2 }

2 
- 
1
{~ A 2n b }

2

Q4 - {
~ 

X
~
2nAaA }{

~ 
AA nAbA }

1 -2 2 1 -2 2
- 

2q A A nAaA } + 
~~~ 

X A nAbA }

= 
~

We can rewrite (4.3) as

— (P2+Q2)½sin (20+x) + R (4.6)

where

x — tan 1(P/Q) . (4 . 7)

It is apparent that the necessary and sufficient conditions for

u to be positive for all values of 0 are

R > 0 and R2 > P2 + Q2 . (4.8)

The stationary values of ii occur when

e — ~ (m— 1,3,5,7) . (4.9)

i n-  5,7 correspond to reversal of the directions of t corre-

sponding to m - 1,3 respectively. We need therefore consider

~ 

~.; . . . .
~~~~~ - r .. •~~ . - - • —-— 

- 
—.- 1II ~~



11.

only  the cases when m =  1, 3 . The two corresponding d i rec t ions  H

of ~ are perpendicular . Whem m £ I , ~ has a maximum value

and when in-  3 , u has a minimum value . From ( 4 . 6 )  it is

evident that  these values are given by

— 2 { R ±  (p 2 +Q 2 ) ½ } . (4.10)

- 

~~~~~~~~~~~~~~~~~~~~~~ --- “~ -—  ~~~~~~~~~~~~~~~~~~~ - - - - - - - -  
~~~~ --~~~~~~~~~~~
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5. Propagation of a plane sinusoidal wave

We now suppose that instead of subject ing the pure homoge-

nously deformed material to a static infinitesimal simple shearing

deformation , we propagate, in the direction n , a cosinusoidal

shear wave of infinitesimal amplitude K and angular frequency

polarized in the direction £ . We note that for an incom-

pressible material, the directions of propagation and polarization

are necessarily perpendicular .

With the usual complex notation, the displacement field u

associated with this wave is given by

u — KL exp t~ (SnX- t) . (5.1)

It is evident from (2.8) and (2.10) that the incremental stress

associated with the deformation (5.1) is obtained from (3.7) by

replacing K by 1WSK exp tw (Sn’X- t) , •thus

5AB - 2twSK
~ AB exp iw (Sn’X- t) - 

~
‘
~AB 

(5.2)

where is given by (3.8). We take the incremental hydro-

static pressure p in the form

p — exp tw (SnX- t) , (5.3)

where ~ is independent of X and t

Bearing in mind the fact that the deformation ~+X is

homogeneous, we obtain the incremental equation of motion as

as
~ a~tB — PUA , (5.4)
B B

where p is the material density. 

~~~~~
- - -

~~~ 
__________________
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In t roduc ing  ( 5 . 1 ) ,  ( 5 . 2 ) ,  ( 5 . 3 )  in to  ( 5 . 4 ) ,  we obtain

- ~: fl BSAB +
~~~ ~A 

- 
~ 

. (5.5)

Multi p lying (5.5) throughou t by tA and summing over A- 1 ,2 ,3

we have , wi th  ( 3 . 9 ) ,  (3.10) and (3 .11) ,

s2 — ~~~ , (5.6)

where u is given by (3.12).

I

______ __________________________________________ 
,.-

~~~~
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6. Reality of the velocities of propagation of a wave

Equations (5.5), together with the equation

~ ~~~ 
— 0 (6.1)

A

are equivalent to the equations (3.3) and (2.15) of [2] which

were used to calculate the possible values of p/Se . It was

found in [2]  that there are two such va lues which are given by

the roots of the quadratic equation

, 2
- + c~ — 0 , (6.2)

\S/

where

— 4(X~n~ + ...){(A~n~K2K3
+ ...)

+ W1(n~n~ (A~~- A~)
2
M1

+ •~~~~
) }

+ ~~~~~~~~~~~~~~~~~ X~ )
2

M1+ ...]

+ l6n~n~n~ (A~ - A 2 )
2

(X 2 A~ )
2

(X~ - A~ ) 2
(W 11W 22 

- W~2)

2 2 (6.3)
8 2{(K1(X 2n~ + X

3n~
)4 •~~~]

+ [ (A 2 A~)
2
n~n~M1

+ • • ] }

and KA , MA (A- 1,2,3) are defined by

KA — W1
+ A~ W2 , MA — 2(W 11

+ 2X~W12 + A~W22) . (6.4)

In (6.3), the dots indicate terms obtained from those given

by cyclic permutation of the subscrip ts 1,2,3 on the A ’ s,

n ’s, K’ s and M’ s.

As was seen in [2], the necessary and sufficient conditions

that the velocities of propagation , parallel to the unit vector • 

— .- . . .~ ______ . ____ ____
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xi , of s inusoidal  wave s of i n f i n i te s ima l  ampli tude , be real are

~ > 0 , 8 > 0 , 82 _ 4ct > 0 . (6 .5 )

In [2]  the fo l lowing exp ression was also given for 82 - 4c&

82. 4ct — 4W~{(A~n~ (X~~- A~ )+  . . . ]

+ 2[ A~n~n~ (A~~- X~)(A~~- X~)+ ...]}

+ 8W2{[(X~~- ~~~~~~~~~~~~~~~~ A~ ) (n ~~+ n~)

+ X~ (X~~- X~)(n~ + n~)}] + ...}

+ 4{((A2 - A~)
2
zi~n~M1

+ ••~~
2

+ l6n~n~n~ (A~ - X~ )
2

(X~ - 
2 2 _ A~)(W~2 

- w11w22)}

(6.6)

By substituting in (6.6) the expression for xi given in (4.1)

and the expressiDns (6.4) for KA and MA , it can be shown,

after lengthy algebraic manipulation, that

4a — l6(P2+Q2) , (6.7)

where P and Q are defined by 
~~~~~~~ 

with (4.5). Thus,

the relation ~2 4a > 0 in (6.5) is automatically satisfied .

In a similar manner it can be shown that

B — 4R . (6.8)

The validity of (6.7) and (6.8) can , of course , be verified

pragmatically by choosing arbitrary numerical values for W1,

~~21 W11~ ~~~ W22 and arb itrary values for a~ , bA , ~A’ 
XA

which satisfy the relations (4.1) and (3.4). Then 82~ 4a

and B can be calculated by using (6.6) and (6.8) and

=1 -~~~~~~~~~~ -,--~~~~~ - - . 
.
~~~~-_ _ _ _ _ _ _ _ _ _
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and R Can be calculated from (4.4) and (4.5).

From (6.71 and (h.8) it follows that

, 
~)

— 4(R -P~ -Q~) . (O.9)

Equat ions (6.7), (b.8) and (~ .9) imply that the conditions (b.5)

for reality of the wave velo cities are precisely the same as the

conditions (4.8) for the incremental shear modulus to be positive .

It was shown in [3] that if we restrict the direction of

propagation of the wave to lie in a principal plane of the under-

lying pure homogeneou s deformation , then the necessary and suffi-

c ient conditions that the velocities of propagation be real are

> 0 and (I~ 
- 

‘

~~~~~~~
- 

~
_)MA + KA > 0 (A— 1 ,2 ,3) . (6 .10)

ft was shown in [11 that  these are also the cond i t i ons  tha t  the

incremen tal shear modulus be positi ve if the plane of shear  is

a principal plane . It was further shown in 1 2 ]  t ha t  the  condi-

t iOns  (6.10) impl y that the relation (6.5)2, and hence the

relat ion Is satisfied for arbitrary choice of the unit

vector n . However , it was shown in [4] that they do not

imply that the relation (6.5)
~~
, and equ ivalently the relation

(4.8)2, is satisfied for arb itrary ~

_ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  4.11.14
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. .  D i r ec t ions  of p o l a r i z a t i o n  of the wave

From ( 6 . 2 )  it fo l lows , w i t h  ( 6 . 7 )  and ( 6 . 8 ) ,  tha t

— ~{8± (8 2~ 4ct)
1
~} — 2 { R ±  (p 2 +Q 2 ) ½ } (7 .1)

s2

for a wave propagating in the direction of n . We see from

(5.6) that p/S2 is the value of the incremental shear modulus

for shear in the direction of polar ization of the wave , the

plane of shear being paral lel to xi

From (4.10) it is seen that the expressions on the right

hand side of (7.1) are the stationary values of the incremental

shear modulus for specified ii . it follows that the directions

of polarization of the sinusoidal waves , which can be propagated

parallel to n , are the directions for which the incremental

shear modulus, for directions of shear perpendicular to n and

~plane of shear parallel to ii , has stationary values.
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he incremental shear modulus is calculated for infinitesi-
mal shear of an incompressible isotropic elastic material in a
state of pure homogeneous deformation. Necessary and sufficient
conditions that it be positive are obtained. These conditions
are related to the Hadainard conditions for propagation of a wave
of infinitesimal amplitude in the deformed material.
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